3.5.17 \(\int \frac {\sqrt {d+e x}}{(f+g x)^{3/2} (a+c x^2)} \, dx\)

Optimal. Leaf size=351 \[ -\frac {2 g \sqrt {d+e x}}{\sqrt {f+g x} \left (a g^2+c f^2\right )}+\frac {\left (-\sqrt {-a} \sqrt {c} (e f-d g)+a e g+c d f\right ) \tanh ^{-1}\left (\frac {\sqrt {d+e x} \sqrt {\sqrt {c} f-\sqrt {-a} g}}{\sqrt {f+g x} \sqrt {\sqrt {c} d-\sqrt {-a} e}}\right )}{\sqrt {-a} \sqrt {\sqrt {c} d-\sqrt {-a} e} \sqrt {\sqrt {c} f-\sqrt {-a} g} \left (a g^2+c f^2\right )}-\frac {\left (\sqrt {-a} \sqrt {c} (e f-d g)+a e g+c d f\right ) \tanh ^{-1}\left (\frac {\sqrt {d+e x} \sqrt {\sqrt {-a} g+\sqrt {c} f}}{\sqrt {f+g x} \sqrt {\sqrt {-a} e+\sqrt {c} d}}\right )}{\sqrt {-a} \sqrt {\sqrt {-a} e+\sqrt {c} d} \sqrt {\sqrt {-a} g+\sqrt {c} f} \left (a g^2+c f^2\right )} \]

________________________________________________________________________________________

Rubi [A]  time = 1.81, antiderivative size = 351, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {908, 37, 6725, 93, 208} \begin {gather*} -\frac {2 g \sqrt {d+e x}}{\sqrt {f+g x} \left (a g^2+c f^2\right )}+\frac {\left (-\sqrt {-a} \sqrt {c} (e f-d g)+a e g+c d f\right ) \tanh ^{-1}\left (\frac {\sqrt {d+e x} \sqrt {\sqrt {c} f-\sqrt {-a} g}}{\sqrt {f+g x} \sqrt {\sqrt {c} d-\sqrt {-a} e}}\right )}{\sqrt {-a} \sqrt {\sqrt {c} d-\sqrt {-a} e} \sqrt {\sqrt {c} f-\sqrt {-a} g} \left (a g^2+c f^2\right )}-\frac {\left (\sqrt {-a} \sqrt {c} (e f-d g)+a e g+c d f\right ) \tanh ^{-1}\left (\frac {\sqrt {d+e x} \sqrt {\sqrt {-a} g+\sqrt {c} f}}{\sqrt {f+g x} \sqrt {\sqrt {-a} e+\sqrt {c} d}}\right )}{\sqrt {-a} \sqrt {\sqrt {-a} e+\sqrt {c} d} \sqrt {\sqrt {-a} g+\sqrt {c} f} \left (a g^2+c f^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[d + e*x]/((f + g*x)^(3/2)*(a + c*x^2)),x]

[Out]

(-2*g*Sqrt[d + e*x])/((c*f^2 + a*g^2)*Sqrt[f + g*x]) + ((c*d*f + a*e*g - Sqrt[-a]*Sqrt[c]*(e*f - d*g))*ArcTanh
[(Sqrt[Sqrt[c]*f - Sqrt[-a]*g]*Sqrt[d + e*x])/(Sqrt[Sqrt[c]*d - Sqrt[-a]*e]*Sqrt[f + g*x])])/(Sqrt[-a]*Sqrt[Sq
rt[c]*d - Sqrt[-a]*e]*Sqrt[Sqrt[c]*f - Sqrt[-a]*g]*(c*f^2 + a*g^2)) - ((c*d*f + a*e*g + Sqrt[-a]*Sqrt[c]*(e*f
- d*g))*ArcTanh[(Sqrt[Sqrt[c]*f + Sqrt[-a]*g]*Sqrt[d + e*x])/(Sqrt[Sqrt[c]*d + Sqrt[-a]*e]*Sqrt[f + g*x])])/(S
qrt[-a]*Sqrt[Sqrt[c]*d + Sqrt[-a]*e]*Sqrt[Sqrt[c]*f + Sqrt[-a]*g]*(c*f^2 + a*g^2))

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 908

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> -Dist[(g*(e*f -
d*g))/(c*f^2 + a*g^2), Int[(d + e*x)^(m - 1)*(f + g*x)^n, x], x] + Dist[1/(c*f^2 + a*g^2), Int[(Simp[c*d*f + a
*e*g + c*(e*f - d*g)*x, x]*(d + e*x)^(m - 1)*(f + g*x)^(n + 1))/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g
}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[m, 0] && LtQ[n, -1]

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {d+e x}}{(f+g x)^{3/2} \left (a+c x^2\right )} \, dx &=\frac {\int \frac {c d f+a e g+c (e f-d g) x}{\sqrt {d+e x} \sqrt {f+g x} \left (a+c x^2\right )} \, dx}{c f^2+a g^2}-\frac {(g (e f-d g)) \int \frac {1}{\sqrt {d+e x} (f+g x)^{3/2}} \, dx}{c f^2+a g^2}\\ &=-\frac {2 g \sqrt {d+e x}}{\left (c f^2+a g^2\right ) \sqrt {f+g x}}+\frac {\int \left (\frac {-a \sqrt {c} (e f-d g)+\sqrt {-a} (c d f+a e g)}{2 a \left (\sqrt {-a}-\sqrt {c} x\right ) \sqrt {d+e x} \sqrt {f+g x}}+\frac {a \sqrt {c} (e f-d g)+\sqrt {-a} (c d f+a e g)}{2 a \left (\sqrt {-a}+\sqrt {c} x\right ) \sqrt {d+e x} \sqrt {f+g x}}\right ) \, dx}{c f^2+a g^2}\\ &=-\frac {2 g \sqrt {d+e x}}{\left (c f^2+a g^2\right ) \sqrt {f+g x}}-\frac {\left (c d f+a e g-\sqrt {-a} \sqrt {c} (e f-d g)\right ) \int \frac {1}{\left (\sqrt {-a}+\sqrt {c} x\right ) \sqrt {d+e x} \sqrt {f+g x}} \, dx}{2 \sqrt {-a} \left (c f^2+a g^2\right )}-\frac {\left (c d f+a e g+\sqrt {-a} \sqrt {c} (e f-d g)\right ) \int \frac {1}{\left (\sqrt {-a}-\sqrt {c} x\right ) \sqrt {d+e x} \sqrt {f+g x}} \, dx}{2 \sqrt {-a} \left (c f^2+a g^2\right )}\\ &=-\frac {2 g \sqrt {d+e x}}{\left (c f^2+a g^2\right ) \sqrt {f+g x}}-\frac {\left (c d f+a e g-\sqrt {-a} \sqrt {c} (e f-d g)\right ) \operatorname {Subst}\left (\int \frac {1}{-\sqrt {c} d+\sqrt {-a} e-\left (-\sqrt {c} f+\sqrt {-a} g\right ) x^2} \, dx,x,\frac {\sqrt {d+e x}}{\sqrt {f+g x}}\right )}{\sqrt {-a} \left (c f^2+a g^2\right )}-\frac {\left (c d f+a e g+\sqrt {-a} \sqrt {c} (e f-d g)\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {c} d+\sqrt {-a} e-\left (\sqrt {c} f+\sqrt {-a} g\right ) x^2} \, dx,x,\frac {\sqrt {d+e x}}{\sqrt {f+g x}}\right )}{\sqrt {-a} \left (c f^2+a g^2\right )}\\ &=-\frac {2 g \sqrt {d+e x}}{\left (c f^2+a g^2\right ) \sqrt {f+g x}}+\frac {\left (c d f+a e g-\sqrt {-a} \sqrt {c} (e f-d g)\right ) \tanh ^{-1}\left (\frac {\sqrt {\sqrt {c} f-\sqrt {-a} g} \sqrt {d+e x}}{\sqrt {\sqrt {c} d-\sqrt {-a} e} \sqrt {f+g x}}\right )}{\sqrt {-a} \sqrt {\sqrt {c} d-\sqrt {-a} e} \sqrt {\sqrt {c} f-\sqrt {-a} g} \left (c f^2+a g^2\right )}-\frac {\left (c d f+a e g+\sqrt {-a} \sqrt {c} (e f-d g)\right ) \tanh ^{-1}\left (\frac {\sqrt {\sqrt {c} f+\sqrt {-a} g} \sqrt {d+e x}}{\sqrt {\sqrt {c} d+\sqrt {-a} e} \sqrt {f+g x}}\right )}{\sqrt {-a} \sqrt {\sqrt {c} d+\sqrt {-a} e} \sqrt {\sqrt {c} f+\sqrt {-a} g} \left (c f^2+a g^2\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.64, size = 265, normalized size = 0.75 \begin {gather*} -\frac {2 g \sqrt {d+e x}}{\sqrt {f+g x} \left (a g^2+c f^2\right )}+\frac {a \sqrt {\sqrt {-a} e-\sqrt {c} d} \tanh ^{-1}\left (\frac {\sqrt {d+e x} \sqrt {\sqrt {-a} g-\sqrt {c} f}}{\sqrt {f+g x} \sqrt {\sqrt {-a} e-\sqrt {c} d}}\right )}{(-a)^{3/2} \left (\sqrt {-a} g-\sqrt {c} f\right )^{3/2}}+\frac {a \sqrt {\sqrt {-a} e+\sqrt {c} d} \tanh ^{-1}\left (\frac {\sqrt {d+e x} \sqrt {\sqrt {-a} g+\sqrt {c} f}}{\sqrt {f+g x} \sqrt {\sqrt {-a} e+\sqrt {c} d}}\right )}{(-a)^{3/2} \left (\sqrt {-a} g+\sqrt {c} f\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d + e*x]/((f + g*x)^(3/2)*(a + c*x^2)),x]

[Out]

(-2*g*Sqrt[d + e*x])/((c*f^2 + a*g^2)*Sqrt[f + g*x]) + (a*Sqrt[-(Sqrt[c]*d) + Sqrt[-a]*e]*ArcTanh[(Sqrt[-(Sqrt
[c]*f) + Sqrt[-a]*g]*Sqrt[d + e*x])/(Sqrt[-(Sqrt[c]*d) + Sqrt[-a]*e]*Sqrt[f + g*x])])/((-a)^(3/2)*(-(Sqrt[c]*f
) + Sqrt[-a]*g)^(3/2)) + (a*Sqrt[Sqrt[c]*d + Sqrt[-a]*e]*ArcTanh[(Sqrt[Sqrt[c]*f + Sqrt[-a]*g]*Sqrt[d + e*x])/
(Sqrt[Sqrt[c]*d + Sqrt[-a]*e]*Sqrt[f + g*x])])/((-a)^(3/2)*(Sqrt[c]*f + Sqrt[-a]*g)^(3/2))

________________________________________________________________________________________

IntegrateAlgebraic [C]  time = 1.28, size = 401, normalized size = 1.14 \begin {gather*} -\frac {2 g \sqrt {d+e x}}{\sqrt {f+g x} \left (a g^2+c f^2\right )}+\frac {\left (\sqrt {a} e-i \sqrt {c} d\right ) \left (\sqrt {c} f-i \sqrt {a} g\right )^2 \tan ^{-1}\left (\frac {\sqrt {d+e x} \sqrt {a g^2+c f^2}}{\sqrt {f+g x} \sqrt {i \sqrt {a} \sqrt {c} d g-i \sqrt {a} \sqrt {c} e f-a e g-c d f}}\right )}{\sqrt {a} \left (a g^2+c f^2\right )^{3/2} \sqrt {-\left (\left (\sqrt {c} d+i \sqrt {a} e\right ) \left (\sqrt {c} f-i \sqrt {a} g\right )\right )}}+\frac {\left (\sqrt {a} e+i \sqrt {c} d\right ) \left (\sqrt {c} f+i \sqrt {a} g\right )^2 \tan ^{-1}\left (\frac {\sqrt {d+e x} \sqrt {a g^2+c f^2}}{\sqrt {f+g x} \sqrt {-i \sqrt {a} \sqrt {c} d g+i \sqrt {a} \sqrt {c} e f-a e g-c d f}}\right )}{\sqrt {a} \left (a g^2+c f^2\right )^{3/2} \sqrt {-\left (\left (\sqrt {c} d-i \sqrt {a} e\right ) \left (\sqrt {c} f+i \sqrt {a} g\right )\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[d + e*x]/((f + g*x)^(3/2)*(a + c*x^2)),x]

[Out]

(-2*g*Sqrt[d + e*x])/((c*f^2 + a*g^2)*Sqrt[f + g*x]) + ((I*Sqrt[c]*d + Sqrt[a]*e)*(Sqrt[c]*f + I*Sqrt[a]*g)^2*
ArcTan[(Sqrt[c*f^2 + a*g^2]*Sqrt[d + e*x])/(Sqrt[-(c*d*f) + I*Sqrt[a]*Sqrt[c]*e*f - I*Sqrt[a]*Sqrt[c]*d*g - a*
e*g]*Sqrt[f + g*x])])/(Sqrt[a]*Sqrt[-((Sqrt[c]*d - I*Sqrt[a]*e)*(Sqrt[c]*f + I*Sqrt[a]*g))]*(c*f^2 + a*g^2)^(3
/2)) + (((-I)*Sqrt[c]*d + Sqrt[a]*e)*(Sqrt[c]*f - I*Sqrt[a]*g)^2*ArcTan[(Sqrt[c*f^2 + a*g^2]*Sqrt[d + e*x])/(S
qrt[-(c*d*f) - I*Sqrt[a]*Sqrt[c]*e*f + I*Sqrt[a]*Sqrt[c]*d*g - a*e*g]*Sqrt[f + g*x])])/(Sqrt[a]*Sqrt[-((Sqrt[c
]*d + I*Sqrt[a]*e)*(Sqrt[c]*f - I*Sqrt[a]*g))]*(c*f^2 + a*g^2)^(3/2))

________________________________________________________________________________________

fricas [B]  time = 66.39, size = 5844, normalized size = 16.65

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(g*x+f)^(3/2)/(c*x^2+a),x, algorithm="fricas")

[Out]

-1/4*((c*f^3 + a*f*g^2 + (c*f^2*g + a*g^3)*x)*sqrt(-(c^2*d*f^3 + 3*a*c*e*f^2*g - 3*a*c*d*f*g^2 - a^2*e*g^3 + (
a*c^3*f^6 + 3*a^2*c^2*f^4*g^2 + 3*a^3*c*f^2*g^4 + a^4*g^6)*sqrt(-(c^3*e^2*f^6 - 6*c^3*d*e*f^5*g + 20*a*c^2*d*e
*f^3*g^3 - 6*a^2*c*d*e*f*g^5 + a^2*c*d^2*g^6 + 3*(3*c^3*d^2 - 2*a*c^2*e^2)*f^4*g^2 - 3*(2*a*c^2*d^2 - 3*a^2*c*
e^2)*f^2*g^4)/(a*c^6*f^12 + 6*a^2*c^5*f^10*g^2 + 15*a^3*c^4*f^8*g^4 + 20*a^4*c^3*f^6*g^6 + 15*a^5*c^2*f^4*g^8
+ 6*a^6*c*f^2*g^10 + a^7*g^12)))/(a*c^3*f^6 + 3*a^2*c^2*f^4*g^2 + 3*a^3*c*f^2*g^4 + a^4*g^6))*log((c*e^2*f^4 -
 2*c*d*e*f^3*g - 2*a*d*e*f*g^3 + a*d^2*g^4 - 3*(c*d^2 + a*e^2)*f^2*g^2 + 2*(c^2*e*f^5 - 3*c^2*d*f^4*g - 4*a*c*
e*f^3*g^2 + 4*a*c*d*f^2*g^3 + 3*a^2*e*f*g^4 - a^2*d*g^5 + 2*(a*c^3*f^7*g + 3*a^2*c^2*f^5*g^3 + 3*a^3*c*f^3*g^5
 + a^4*f*g^7)*sqrt(-(c^3*e^2*f^6 - 6*c^3*d*e*f^5*g + 20*a*c^2*d*e*f^3*g^3 - 6*a^2*c*d*e*f*g^5 + a^2*c*d^2*g^6
+ 3*(3*c^3*d^2 - 2*a*c^2*e^2)*f^4*g^2 - 3*(2*a*c^2*d^2 - 3*a^2*c*e^2)*f^2*g^4)/(a*c^6*f^12 + 6*a^2*c^5*f^10*g^
2 + 15*a^3*c^4*f^8*g^4 + 20*a^4*c^3*f^6*g^6 + 15*a^5*c^2*f^4*g^8 + 6*a^6*c*f^2*g^10 + a^7*g^12)))*sqrt(e*x + d
)*sqrt(g*x + f)*sqrt(-(c^2*d*f^3 + 3*a*c*e*f^2*g - 3*a*c*d*f*g^2 - a^2*e*g^3 + (a*c^3*f^6 + 3*a^2*c^2*f^4*g^2
+ 3*a^3*c*f^2*g^4 + a^4*g^6)*sqrt(-(c^3*e^2*f^6 - 6*c^3*d*e*f^5*g + 20*a*c^2*d*e*f^3*g^3 - 6*a^2*c*d*e*f*g^5 +
 a^2*c*d^2*g^6 + 3*(3*c^3*d^2 - 2*a*c^2*e^2)*f^4*g^2 - 3*(2*a*c^2*d^2 - 3*a^2*c*e^2)*f^2*g^4)/(a*c^6*f^12 + 6*
a^2*c^5*f^10*g^2 + 15*a^3*c^4*f^8*g^4 + 20*a^4*c^3*f^6*g^6 + 15*a^5*c^2*f^4*g^8 + 6*a^6*c*f^2*g^10 + a^7*g^12)
))/(a*c^3*f^6 + 3*a^2*c^2*f^4*g^2 + 3*a^3*c*f^2*g^4 + a^4*g^6)) + 2*(c*e^2*f^3*g - 3*c*d*e*f^2*g^2 - 3*a*e^2*f
*g^3 + a*d*e*g^4)*x - (2*c^3*d*f^7 + 6*a*c^2*d*f^5*g^2 + 6*a^2*c*d*f^3*g^4 + 2*a^3*d*f*g^6 + (c^3*e*f^7 + c^3*
d*f^6*g + 3*a*c^2*e*f^5*g^2 + 3*a*c^2*d*f^4*g^3 + 3*a^2*c*e*f^3*g^4 + 3*a^2*c*d*f^2*g^5 + a^3*e*f*g^6 + a^3*d*
g^7)*x)*sqrt(-(c^3*e^2*f^6 - 6*c^3*d*e*f^5*g + 20*a*c^2*d*e*f^3*g^3 - 6*a^2*c*d*e*f*g^5 + a^2*c*d^2*g^6 + 3*(3
*c^3*d^2 - 2*a*c^2*e^2)*f^4*g^2 - 3*(2*a*c^2*d^2 - 3*a^2*c*e^2)*f^2*g^4)/(a*c^6*f^12 + 6*a^2*c^5*f^10*g^2 + 15
*a^3*c^4*f^8*g^4 + 20*a^4*c^3*f^6*g^6 + 15*a^5*c^2*f^4*g^8 + 6*a^6*c*f^2*g^10 + a^7*g^12)))/x) - (c*f^3 + a*f*
g^2 + (c*f^2*g + a*g^3)*x)*sqrt(-(c^2*d*f^3 + 3*a*c*e*f^2*g - 3*a*c*d*f*g^2 - a^2*e*g^3 + (a*c^3*f^6 + 3*a^2*c
^2*f^4*g^2 + 3*a^3*c*f^2*g^4 + a^4*g^6)*sqrt(-(c^3*e^2*f^6 - 6*c^3*d*e*f^5*g + 20*a*c^2*d*e*f^3*g^3 - 6*a^2*c*
d*e*f*g^5 + a^2*c*d^2*g^6 + 3*(3*c^3*d^2 - 2*a*c^2*e^2)*f^4*g^2 - 3*(2*a*c^2*d^2 - 3*a^2*c*e^2)*f^2*g^4)/(a*c^
6*f^12 + 6*a^2*c^5*f^10*g^2 + 15*a^3*c^4*f^8*g^4 + 20*a^4*c^3*f^6*g^6 + 15*a^5*c^2*f^4*g^8 + 6*a^6*c*f^2*g^10
+ a^7*g^12)))/(a*c^3*f^6 + 3*a^2*c^2*f^4*g^2 + 3*a^3*c*f^2*g^4 + a^4*g^6))*log((c*e^2*f^4 - 2*c*d*e*f^3*g - 2*
a*d*e*f*g^3 + a*d^2*g^4 - 3*(c*d^2 + a*e^2)*f^2*g^2 - 2*(c^2*e*f^5 - 3*c^2*d*f^4*g - 4*a*c*e*f^3*g^2 + 4*a*c*d
*f^2*g^3 + 3*a^2*e*f*g^4 - a^2*d*g^5 + 2*(a*c^3*f^7*g + 3*a^2*c^2*f^5*g^3 + 3*a^3*c*f^3*g^5 + a^4*f*g^7)*sqrt(
-(c^3*e^2*f^6 - 6*c^3*d*e*f^5*g + 20*a*c^2*d*e*f^3*g^3 - 6*a^2*c*d*e*f*g^5 + a^2*c*d^2*g^6 + 3*(3*c^3*d^2 - 2*
a*c^2*e^2)*f^4*g^2 - 3*(2*a*c^2*d^2 - 3*a^2*c*e^2)*f^2*g^4)/(a*c^6*f^12 + 6*a^2*c^5*f^10*g^2 + 15*a^3*c^4*f^8*
g^4 + 20*a^4*c^3*f^6*g^6 + 15*a^5*c^2*f^4*g^8 + 6*a^6*c*f^2*g^10 + a^7*g^12)))*sqrt(e*x + d)*sqrt(g*x + f)*sqr
t(-(c^2*d*f^3 + 3*a*c*e*f^2*g - 3*a*c*d*f*g^2 - a^2*e*g^3 + (a*c^3*f^6 + 3*a^2*c^2*f^4*g^2 + 3*a^3*c*f^2*g^4 +
 a^4*g^6)*sqrt(-(c^3*e^2*f^6 - 6*c^3*d*e*f^5*g + 20*a*c^2*d*e*f^3*g^3 - 6*a^2*c*d*e*f*g^5 + a^2*c*d^2*g^6 + 3*
(3*c^3*d^2 - 2*a*c^2*e^2)*f^4*g^2 - 3*(2*a*c^2*d^2 - 3*a^2*c*e^2)*f^2*g^4)/(a*c^6*f^12 + 6*a^2*c^5*f^10*g^2 +
15*a^3*c^4*f^8*g^4 + 20*a^4*c^3*f^6*g^6 + 15*a^5*c^2*f^4*g^8 + 6*a^6*c*f^2*g^10 + a^7*g^12)))/(a*c^3*f^6 + 3*a
^2*c^2*f^4*g^2 + 3*a^3*c*f^2*g^4 + a^4*g^6)) + 2*(c*e^2*f^3*g - 3*c*d*e*f^2*g^2 - 3*a*e^2*f*g^3 + a*d*e*g^4)*x
 - (2*c^3*d*f^7 + 6*a*c^2*d*f^5*g^2 + 6*a^2*c*d*f^3*g^4 + 2*a^3*d*f*g^6 + (c^3*e*f^7 + c^3*d*f^6*g + 3*a*c^2*e
*f^5*g^2 + 3*a*c^2*d*f^4*g^3 + 3*a^2*c*e*f^3*g^4 + 3*a^2*c*d*f^2*g^5 + a^3*e*f*g^6 + a^3*d*g^7)*x)*sqrt(-(c^3*
e^2*f^6 - 6*c^3*d*e*f^5*g + 20*a*c^2*d*e*f^3*g^3 - 6*a^2*c*d*e*f*g^5 + a^2*c*d^2*g^6 + 3*(3*c^3*d^2 - 2*a*c^2*
e^2)*f^4*g^2 - 3*(2*a*c^2*d^2 - 3*a^2*c*e^2)*f^2*g^4)/(a*c^6*f^12 + 6*a^2*c^5*f^10*g^2 + 15*a^3*c^4*f^8*g^4 +
20*a^4*c^3*f^6*g^6 + 15*a^5*c^2*f^4*g^8 + 6*a^6*c*f^2*g^10 + a^7*g^12)))/x) + (c*f^3 + a*f*g^2 + (c*f^2*g + a*
g^3)*x)*sqrt(-(c^2*d*f^3 + 3*a*c*e*f^2*g - 3*a*c*d*f*g^2 - a^2*e*g^3 - (a*c^3*f^6 + 3*a^2*c^2*f^4*g^2 + 3*a^3*
c*f^2*g^4 + a^4*g^6)*sqrt(-(c^3*e^2*f^6 - 6*c^3*d*e*f^5*g + 20*a*c^2*d*e*f^3*g^3 - 6*a^2*c*d*e*f*g^5 + a^2*c*d
^2*g^6 + 3*(3*c^3*d^2 - 2*a*c^2*e^2)*f^4*g^2 - 3*(2*a*c^2*d^2 - 3*a^2*c*e^2)*f^2*g^4)/(a*c^6*f^12 + 6*a^2*c^5*
f^10*g^2 + 15*a^3*c^4*f^8*g^4 + 20*a^4*c^3*f^6*g^6 + 15*a^5*c^2*f^4*g^8 + 6*a^6*c*f^2*g^10 + a^7*g^12)))/(a*c^
3*f^6 + 3*a^2*c^2*f^4*g^2 + 3*a^3*c*f^2*g^4 + a^4*g^6))*log((c*e^2*f^4 - 2*c*d*e*f^3*g - 2*a*d*e*f*g^3 + a*d^2
*g^4 - 3*(c*d^2 + a*e^2)*f^2*g^2 + 2*(c^2*e*f^5 - 3*c^2*d*f^4*g - 4*a*c*e*f^3*g^2 + 4*a*c*d*f^2*g^3 + 3*a^2*e*
f*g^4 - a^2*d*g^5 - 2*(a*c^3*f^7*g + 3*a^2*c^2*f^5*g^3 + 3*a^3*c*f^3*g^5 + a^4*f*g^7)*sqrt(-(c^3*e^2*f^6 - 6*c
^3*d*e*f^5*g + 20*a*c^2*d*e*f^3*g^3 - 6*a^2*c*d*e*f*g^5 + a^2*c*d^2*g^6 + 3*(3*c^3*d^2 - 2*a*c^2*e^2)*f^4*g^2
- 3*(2*a*c^2*d^2 - 3*a^2*c*e^2)*f^2*g^4)/(a*c^6*f^12 + 6*a^2*c^5*f^10*g^2 + 15*a^3*c^4*f^8*g^4 + 20*a^4*c^3*f^
6*g^6 + 15*a^5*c^2*f^4*g^8 + 6*a^6*c*f^2*g^10 + a^7*g^12)))*sqrt(e*x + d)*sqrt(g*x + f)*sqrt(-(c^2*d*f^3 + 3*a
*c*e*f^2*g - 3*a*c*d*f*g^2 - a^2*e*g^3 - (a*c^3*f^6 + 3*a^2*c^2*f^4*g^2 + 3*a^3*c*f^2*g^4 + a^4*g^6)*sqrt(-(c^
3*e^2*f^6 - 6*c^3*d*e*f^5*g + 20*a*c^2*d*e*f^3*g^3 - 6*a^2*c*d*e*f*g^5 + a^2*c*d^2*g^6 + 3*(3*c^3*d^2 - 2*a*c^
2*e^2)*f^4*g^2 - 3*(2*a*c^2*d^2 - 3*a^2*c*e^2)*f^2*g^4)/(a*c^6*f^12 + 6*a^2*c^5*f^10*g^2 + 15*a^3*c^4*f^8*g^4
+ 20*a^4*c^3*f^6*g^6 + 15*a^5*c^2*f^4*g^8 + 6*a^6*c*f^2*g^10 + a^7*g^12)))/(a*c^3*f^6 + 3*a^2*c^2*f^4*g^2 + 3*
a^3*c*f^2*g^4 + a^4*g^6)) + 2*(c*e^2*f^3*g - 3*c*d*e*f^2*g^2 - 3*a*e^2*f*g^3 + a*d*e*g^4)*x + (2*c^3*d*f^7 + 6
*a*c^2*d*f^5*g^2 + 6*a^2*c*d*f^3*g^4 + 2*a^3*d*f*g^6 + (c^3*e*f^7 + c^3*d*f^6*g + 3*a*c^2*e*f^5*g^2 + 3*a*c^2*
d*f^4*g^3 + 3*a^2*c*e*f^3*g^4 + 3*a^2*c*d*f^2*g^5 + a^3*e*f*g^6 + a^3*d*g^7)*x)*sqrt(-(c^3*e^2*f^6 - 6*c^3*d*e
*f^5*g + 20*a*c^2*d*e*f^3*g^3 - 6*a^2*c*d*e*f*g^5 + a^2*c*d^2*g^6 + 3*(3*c^3*d^2 - 2*a*c^2*e^2)*f^4*g^2 - 3*(2
*a*c^2*d^2 - 3*a^2*c*e^2)*f^2*g^4)/(a*c^6*f^12 + 6*a^2*c^5*f^10*g^2 + 15*a^3*c^4*f^8*g^4 + 20*a^4*c^3*f^6*g^6
+ 15*a^5*c^2*f^4*g^8 + 6*a^6*c*f^2*g^10 + a^7*g^12)))/x) - (c*f^3 + a*f*g^2 + (c*f^2*g + a*g^3)*x)*sqrt(-(c^2*
d*f^3 + 3*a*c*e*f^2*g - 3*a*c*d*f*g^2 - a^2*e*g^3 - (a*c^3*f^6 + 3*a^2*c^2*f^4*g^2 + 3*a^3*c*f^2*g^4 + a^4*g^6
)*sqrt(-(c^3*e^2*f^6 - 6*c^3*d*e*f^5*g + 20*a*c^2*d*e*f^3*g^3 - 6*a^2*c*d*e*f*g^5 + a^2*c*d^2*g^6 + 3*(3*c^3*d
^2 - 2*a*c^2*e^2)*f^4*g^2 - 3*(2*a*c^2*d^2 - 3*a^2*c*e^2)*f^2*g^4)/(a*c^6*f^12 + 6*a^2*c^5*f^10*g^2 + 15*a^3*c
^4*f^8*g^4 + 20*a^4*c^3*f^6*g^6 + 15*a^5*c^2*f^4*g^8 + 6*a^6*c*f^2*g^10 + a^7*g^12)))/(a*c^3*f^6 + 3*a^2*c^2*f
^4*g^2 + 3*a^3*c*f^2*g^4 + a^4*g^6))*log((c*e^2*f^4 - 2*c*d*e*f^3*g - 2*a*d*e*f*g^3 + a*d^2*g^4 - 3*(c*d^2 + a
*e^2)*f^2*g^2 - 2*(c^2*e*f^5 - 3*c^2*d*f^4*g - 4*a*c*e*f^3*g^2 + 4*a*c*d*f^2*g^3 + 3*a^2*e*f*g^4 - a^2*d*g^5 -
 2*(a*c^3*f^7*g + 3*a^2*c^2*f^5*g^3 + 3*a^3*c*f^3*g^5 + a^4*f*g^7)*sqrt(-(c^3*e^2*f^6 - 6*c^3*d*e*f^5*g + 20*a
*c^2*d*e*f^3*g^3 - 6*a^2*c*d*e*f*g^5 + a^2*c*d^2*g^6 + 3*(3*c^3*d^2 - 2*a*c^2*e^2)*f^4*g^2 - 3*(2*a*c^2*d^2 -
3*a^2*c*e^2)*f^2*g^4)/(a*c^6*f^12 + 6*a^2*c^5*f^10*g^2 + 15*a^3*c^4*f^8*g^4 + 20*a^4*c^3*f^6*g^6 + 15*a^5*c^2*
f^4*g^8 + 6*a^6*c*f^2*g^10 + a^7*g^12)))*sqrt(e*x + d)*sqrt(g*x + f)*sqrt(-(c^2*d*f^3 + 3*a*c*e*f^2*g - 3*a*c*
d*f*g^2 - a^2*e*g^3 - (a*c^3*f^6 + 3*a^2*c^2*f^4*g^2 + 3*a^3*c*f^2*g^4 + a^4*g^6)*sqrt(-(c^3*e^2*f^6 - 6*c^3*d
*e*f^5*g + 20*a*c^2*d*e*f^3*g^3 - 6*a^2*c*d*e*f*g^5 + a^2*c*d^2*g^6 + 3*(3*c^3*d^2 - 2*a*c^2*e^2)*f^4*g^2 - 3*
(2*a*c^2*d^2 - 3*a^2*c*e^2)*f^2*g^4)/(a*c^6*f^12 + 6*a^2*c^5*f^10*g^2 + 15*a^3*c^4*f^8*g^4 + 20*a^4*c^3*f^6*g^
6 + 15*a^5*c^2*f^4*g^8 + 6*a^6*c*f^2*g^10 + a^7*g^12)))/(a*c^3*f^6 + 3*a^2*c^2*f^4*g^2 + 3*a^3*c*f^2*g^4 + a^4
*g^6)) + 2*(c*e^2*f^3*g - 3*c*d*e*f^2*g^2 - 3*a*e^2*f*g^3 + a*d*e*g^4)*x + (2*c^3*d*f^7 + 6*a*c^2*d*f^5*g^2 +
6*a^2*c*d*f^3*g^4 + 2*a^3*d*f*g^6 + (c^3*e*f^7 + c^3*d*f^6*g + 3*a*c^2*e*f^5*g^2 + 3*a*c^2*d*f^4*g^3 + 3*a^2*c
*e*f^3*g^4 + 3*a^2*c*d*f^2*g^5 + a^3*e*f*g^6 + a^3*d*g^7)*x)*sqrt(-(c^3*e^2*f^6 - 6*c^3*d*e*f^5*g + 20*a*c^2*d
*e*f^3*g^3 - 6*a^2*c*d*e*f*g^5 + a^2*c*d^2*g^6 + 3*(3*c^3*d^2 - 2*a*c^2*e^2)*f^4*g^2 - 3*(2*a*c^2*d^2 - 3*a^2*
c*e^2)*f^2*g^4)/(a*c^6*f^12 + 6*a^2*c^5*f^10*g^2 + 15*a^3*c^4*f^8*g^4 + 20*a^4*c^3*f^6*g^6 + 15*a^5*c^2*f^4*g^
8 + 6*a^6*c*f^2*g^10 + a^7*g^12)))/x) + 8*sqrt(e*x + d)*sqrt(g*x + f)*g)/(c*f^3 + a*f*g^2 + (c*f^2*g + a*g^3)*
x)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(g*x+f)^(3/2)/(c*x^2+a),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.06, size = 5383, normalized size = 15.34 \begin {gather*} \text {output too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(1/2)/(g*x+f)^(3/2)/(c*x^2+a),x)

[Out]

result too large to display

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {e x + d}}{{\left (c x^{2} + a\right )} {\left (g x + f\right )}^{\frac {3}{2}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(g*x+f)^(3/2)/(c*x^2+a),x, algorithm="maxima")

[Out]

integrate(sqrt(e*x + d)/((c*x^2 + a)*(g*x + f)^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {d+e\,x}}{{\left (f+g\,x\right )}^{3/2}\,\left (c\,x^2+a\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^(1/2)/((f + g*x)^(3/2)*(a + c*x^2)),x)

[Out]

int((d + e*x)^(1/2)/((f + g*x)^(3/2)*(a + c*x^2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(1/2)/(g*x+f)**(3/2)/(c*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________